

Computer Science Capstone Design
Assignment: Final “As-Built” Report

Introduction
The final report summarizes "the story" of the project into a single coherent narrative. If someone

had time to read just one document to understand everything about this project, starting from

motivations and vision, summarizing the development process, and describing the resulting product,

this would be the document to read. Much of the material to be included in the report can and

should be shamelessly re-used from previous document products you've produced...with appropriate

condensing, seaming together and cleaning up, of course. Be sure to update information adapted

from previous deliverables! This is the final “as-built” report, meaning that it shouldn’t contain

“requirements as we understood them in October” or “Architecture as we thought it would be when

we wrote our Design document in January”; you’ll want to update/refine all such information so

that it reflects how the product actually turned out...i.e., “as-built”.

Target Audience: The central goal of Capstone is to provide the client with a “strong beta

prototype” on the target software, to provide a strong basis for further refinement and extension into

a final, deployable product. With this in mind, the final report should be targeted very consciously

towards efficiently getting a future software team up to speed. Imagine that you have no clear idea

of the project, but have just been assigned to pick it up and continue coding. What would be critical

for you to know to get traction fast? You’d need an intro section that explained the big picture

motivations clearly; you’d need a concise summary of requirements acquisition and the

requirements that came out of it; you’d need an overview of the architecture along with some

rationale for *why* it was designed this way; you’d need a discussion of implementation and key

decisions (why this framework vs. others, etc.), and so on. The content outline below is driven by

this focused need to get a future software team up to speed. In terms of tone and level of detail, this

means you should focus on writing it for a reasonably technically gifted audience; don’t be afraid to

explain some technical detail.

If you write this document correctly, a future team will be able to read it, set up their programming

environments and toolchain, and continue your work in short order.

Don't forget the cardinal rule of good technical writing: Coherent "story" and flow of narrative is

everything! Your document should tell the story of your project from beginning to end, without

abrupt transitions anywhere. Pay special attention to boundaries between sections (provide strong

segues from one to next) and to section in which you present lots of detail (give section intro

paragraphs to explain where you are in the story, what details you'll be presenting in the section, and

how they fit into the story). Reading your document should be a guided tour...not a jumble of

unconnected sections and random dumps of detail!

Document length: As usual, there can be no specific minimum or maximum length here. Your aim

is to concisely yet completely describe your project from motivations to design rational to internal

architecture – at a level of clarity and detail that will allow a future team to quickly pick up where

you left off. Grading will be based on this metric, i.e.: Was it clear? Was it complete? How

effective is it as an on-boarding document? I’d say roughly 10-20 pages for most projects...

Content Outline
As usual, the detailed structure and content of the report might vary somewhat depending on the

specific project it is for but, in general, one would expect to see the following sections.

Cover Page

The customary cover page with the document title, your team's name and logo, team members,

sponsor and mentor names, and the date.

Table of Contents

The contents of the document, and the page number on which each section begins. Just index the

main sections; don't index and give page numbers for every two-paragraph sub-sub-section you

have in there!

Introduction

Once again, you'll need to efficiently and clearly introduce your project to readers with unknown

levels of technical expertise. Assume that the reader has never heard about your project before, so

you'll want to start with the big picture and motivations: the context of your system, including how

it is to be used and by what kinds of users, while not forgetting any impacts of your work on

organizations and how they operate. Then get more specific about the problems that your client has

and what you built to solve them. You have practiced and refined similar introductions for previous

documents during the project, so you should be quite good at this by now!

A successful introduction will leave the reader feeling that the project is interesting,

necessary/useful, and that the solution vision is compelling and should clearly solve the client issues

that were outlined. This sets the stage for this document by providing a framework within which to

understand and evaluation the upcoming discussion of various project details.

Process Overview

Provide an overview of the process you used in developing your project. You should include

information on the overall lifecycle development process you used as well as tools and artifacts that

supported you in the use of this process, e.g., version control, CASE tools, task managers, etc.

Describe the specific roles that each of your team members adopted, and what other team

procedures you used to organize your work (recall the Team Standards deliverable).

Requirements

This section should summarize your functional and non-functional requirements (including

qualities), as stated in the requirements document. Start by briefly reviewing the acquisition

process, then summarize the requirements that resulted.

Architecture and Implementation

This section is the true heart of your document, and essentially comprises the "as-built" report for

the project. The goal is very simple: to describe the software architecture and implementation of

your system in detail sufficient to allow an incoming software engineer to read it once, and then

immediately be productive in extending/maintaining your product. Ask yourself: if you came onto

a new project and someone handed you an as-built document and said "read this and come in ready

to work on it tomorrow", what you want to find in that document.

This section will generally consist of two parts. First, to give an overview of the system, you'll

want to develop one ore more well-crafted architectural diagram of your system's high-level

architecture, which you then walk the reader through, carefully discussing all of the components

shown including: (a) the key responsibilities and features of each component, (b) the main

communication mechanisms and information/control flows of the architecture, and (c) some

illustrative example(s) of what the component does during a typical use case. Wrap up this

overview part by outlining influences from one or more architectural styles embodied by this

architecture.

In the latter subsections of this section, you will then give more detail on each of the major

components. You don't have to go into ultra-low-level detail here. Keep the goal in mind: what

information would you want about that component if you were an engineer new to the project?

Finally, in the concluding paragraphs of the section, you should discuss how what you built differs

from what you intended to build: in other words, the differences between your prescriptive and

descriptive architectures...between "as-planned" and "as-built". Example dimensions that could be

applicable: What functions did you end up not building and why? What functions did you

implement in a different way than what you planned and why? What architectural decisions did you

have to change during development, and what drove these changes?

Testing

For this section, discuss your testing activities. This should include your overall testing strategy and

the kinds of tests you ran to validate your implementation. Your aim here is give the reader an

honest and solid overview of how the delivered software has been tested. Note that source-code

tests are just one aspect of testing. Integration and usability tests should also be used to make sure

that the functionality needed has actually been implemented in a way that users can access. This

section should also describe the results of your testing and any changes you made to your design or

source-code in response to testing results.

Project Timeline

Now that we know what your team produced, give a quick review of the overall project timeline.

You could do this as a Gantt chart...or as a sequential list of milestones. In either case, briefly walk

through the schedule you present, describing the key phases as well as any interesting factoids (how

work was divided up in the team, who led on what, etc.) related to individual phases. Be sure to say

where you are at this moment in the schedule your have outlined.

Future Work

Every good project will generate new ideas – by the dev team and/or the client – for things the

product could or should do, but which were not originally envisioned within the scope of the

project. Less desirable, there might also be features that were in the original scope of the project,

but were not implemented for some reason.

Introduce, motivate, and discuss any important or promising features that you see as desirable and

are recommending be considered for development by your client, e.g., in developing version 2.0 of

your product.

Conclusion

As always, every document needs a conclusion that wraps up the discussion. Start by briefly

reviewing the context and motivations of the project, your clients business work flow and what's

wrong with it. Then state what you have built that addresses these needs, pausing to bullet out a

few of the best specific features. Wrap up with discussing the impact your project solution will

have (a) for your client, e.g., time-saved, accuracy improved, throughput increased...whatever. Put

some specific numbers to it if you can. Then talk about (b) broader impacts (if any) that your

product might have, i.e., other contexts or clients that might be able to use it, potential for broader

markets, and so on. Close with some reflective comments on your team, the project process, and

the Capstone class.

Glossary

If you use any terms that have special meaning (domain-specific terminology, for example), lay out

the definitions here.

Appendix A: Development Environment and Toolchain (absolutely required)

Remember how uninformed you were on practical mechanics of how to actually develop code in

your chosen environment when you started? How long it took you to figure out your toolchain and

development cycle? One of the key pieces of “organizational knowledge” for a project is exactly

this: how should a new team member configure their development machine, and what is the process

leading from code to production of a runnable product? This is what you want to explain in this

appendix. Write it as a “how-to” for setting up your machine:

• Hardware: Start with an overview of your environment: what platform(s) did your team

develop on (Linux, Mac, etc.)? Give a rough overview of the tech specs (processor,

memory) of the machines. Comment on whether you feel there are any minimum hardware

requirements for effective development of your software, beyond “a decent machine”.

• Toolchain: Next intro and discuss all the software tools you tools used: development

environment/editor + plug-ins which were useful/critical, backend databases, other

supportive tools/packages (e.g. package managers, etc.) that you installed to make life easier

or that are required for other pieces of the software chain to work right. For each one, name

it, explain briefly what it does in general, and then why/how it was helpful/needed for this

project.

• Setup: Now discuss how to actually set up your environment. This should be a step-by-

step guide: install this, install that, place this in that directory, etc. You don’t have to

discuss in detail how to install individual packages (instructions for that are presumably on

the site for that package), but do point out any special settings or configurations that should

be made in installing it that are relevant to this project. Just imagine yourself walking a new

team member through setting up their machine.

• Production Cycle: At this point, your instructions should have allowed a newbie to

completely set up his/her machine for action. Now let’s get down to work: explain the

production cycle, i.e., walk through how the edit-compile-deploy process works. It might be

helpful here to focus it around a specific example: explain how one might change, for

instance, the text that appears in some obvious dialogue in the application...then what you’d

do to build and produce a “new version” of your app. To avoid missing small but critical

steps, it is useful to just do a little edit yourself and pay attention and write down each step

in the process...

In sum, reading this appendix and following the instructions should literally allow a new team

member to effectively edit your code and push out a new product version. With that, they are off

and running!

Other appendices (optional)

Include any other documents that you feel make your design specification easier to understand but

are not central to the project's description.

	Introduction
	Content Outline
	Cover Page
	Table of Contents
	Introduction
	Process Overview
	Requirements
	Architecture and Implementation
	Testing
	Project Timeline
	Future Work
	Conclusion
	Glossary
	Appendix A: Development Environment and Toolchain (absolutely required)
	Other appendices (optional)

